



## Case Study: Deploying fast machine-learnt models for fusion plasmas

How UKAEA optimised turbulence simulations using  
digiLab's uncertainty-aware machine learning.

### Impact at a glance

**~100,000 x**

Faster than direct  
simulation, with reliable  
accuracy

**4 x**

more efficient  
sampling

**100,000's**

of CPU  
hours saved





## About UKAEA

digiLab is working in partnership with the UK Atomic Energy Authority (UKAEA) on the STEP programme, which aims to build a prototype fusion energy power plant by 2040. As part of this, digiLab is supporting multiple projects that address some of the toughest scientific challenges in plasma physics.



**Image:** Output predictions (growth rates) from digiLab's emulator of plasma turbulence.

“

Delivering the fusion roadmap will require a big investment in digital technologies. And at the heart of those technologies are the solutions digiLab is working on.

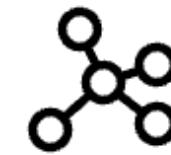
**Dr Rob Akers, Director of Computing Programmes & Senior Fellow, UKAEA**



”






## The Challenge

Fusion machines require plasma to be **confined** and **controlled** at extreme temperatures. A major barrier to this is **turbulence** - the chaotic and irregular motion of particles that causes energy leakage from the tokamak. **Predicting turbulence accurately is critical** to reactor design, but traditional simulations are computationally prohibitive, requiring millions of CPU hours and producing incomplete insights.



## The Solution

digiLab developed state-of-the-art machine learning emulators for **Micro-Tearing Modes** (MTMs) and **Kinetic Ballooning Modes** (KBMs), applying both classification and regression algorithms. These emulators incorporate **Uncertainty Quantification (UQ)**, providing engineers with trustworthy **confidence intervals** around predictions. This allows researchers to understand reactor performance under varied conditions, prioritise physical testing through Active Learning, and design more effective control strategies.



## The Approach

digiLab and UKAEA partnered to develop fast emulators that accelerate turbulence simulations. This collaboration - now in its third year - applies **UQ** methods to ensure reliable predictions, even when training data is sparse. By focusing on turbulent modes specific to **spherical tokamaks**, the project addresses areas of plasma behaviour that remain critically understudied.



## The results

Provided results at up to  
**~100,000 x**

**the speed of direct  
simulation, with  
reliable accuracy**

opening doors to otherwise  
impossible investigations.

**4 x**

**reduction  
in redundant  
simulations**

thanks to active learning  
and more efficient  
model sampling.

Provided

**100,000's**

**savings**

in CPU hours, for better  
performance, reduced  
energy consumption and  
costs.

As UKAEA's strategic partner for Uncertainty Quantification, digiLab is helping tackle one of engineering's greatest challenges; making commercial fusion energy a reality.

